Parameter Adjustment Based on Performance Prediction: Towards an Instance-Aware Problem Solver

نویسندگان

  • Frank Hutter
  • Youssef Hamadi
چکیده

Tuning an algorithm’s parameters for robust and high performance is a tedious and time-consuming task that often requires knowledge about both the domain and the algorithm of interest. Furthermore, the optimal parameter configuration to use may differ considerably across problem instances. In this report, we define and tackle the algorithm configuration problem, which is to automatically choose the optimal parameter configuration for a given algorithm on a per-instance base. We employ an indirect approach that predicts algorithm runtime for the problem instance at hand and each (continuous) parameter configuration, and then simply chooses the configuration that minimizes the prediction. This approach is based on similar work by Leyton-Brown et al. [LBNS02, NLBD04] who tackle the algorithm selection problem [Ric76] (given a problem instance, choose the best algorithm to solve it). While all previous studies for runtime prediction focussed on tree search algorithm, we demonstrate that it is possible to fairly accurately predict the runtime of SAPS [HTH02], one of the best-performing stochastic local search algorithms for SAT. We also show that our approach automatically picks parameter configurations that speed up SAPS by an average factor of more than two when compared to its default parameter configuration. Finally, we introduce sequential Bayesian learning to the problem of runtime prediction, enabling an incremental learning approach and yielding very informative estimates of predictive uncertainty.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary User Clustering Based on Time-Aware Interest Changes in the Recommender System

The plenty of data on the Internet has created problems for users and has caused confusion in finding the proper information. Also, users' tastes and preferences change over time. Recommender systems can help users find useful information. Due to changing interests, systems must be able to evolve. In order to solve this problem, users are clustered that determine the most desirable users, it pa...

متن کامل

Solver tuning with genetic algorithms

Currently the parameters in a constraint solver are often selected by hand by experts in the field; these parameters might include the level of preprocessing to be used, the variable ordering heuristic or the suitable modelling approach. The efficient and automatic mechanism of parameters tuning for a constraint solver is a step towards making constraint programming a more widely accessible tec...

متن کامل

Aerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)

An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...

متن کامل

Towards Parameter-aware Benchmarking of Bytecode and API for Predicting Component Performance

Performance prediction of component-based software systems is needed for systematic evaluation of design decisions, but also when an application’s execution system is changed. Often, the entire application cannot be benchmarked in advance on its new execution system due to high costs or because some required services cannot be provided there. In this case, performance of bytecode instructions o...

متن کامل

MOEICA: Enhanced multi-objective optimization based on imperialist competitive algorithm

In this paper, a multi-objective enhanced imperialist competitive algorithm (MOEICA) is presented. The main structures of the original ICA are employed while some novel approaches are also developed. Other than the non-dominated sorting and crowding distance methods which are used as the main tools for comparing and ranking solutions, an auxiliary comparison approach called fuzzy possession is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005